Incorporating a spread event model defined by MODIS hot spots into fire growth modeling

Justin Podur (YorkU) B.M. Wotton (CFS, U of T) A Saliola (YorkU)

For Wildland Fire Canada, Waterloo ON, Oct 2010

Introduction	Calibrating fire growth models
Data	MODIS Satellite Hotspots
Model	A logistic regression model for fire spread events based on ISI; extinguishment based on rain
Conclusions	Predicting fire sizes and fire growth days

Introduction Fire managers report: fires either "run" or don't

Data

Model

During fire "runs" (which we will call spread events), it is very difficult to do fire suppression.

During non-spread events, it is possible.

Conclusions

Introduction Using FBP or PROMETHEUS requires calibration

Data

Model

 Suppose the second s

Conclusions

To use PROMETHEUS for multi-day large fire simulations and landscape fire research, it is necessary to identify a sub set of burning days from the start date to the end date.

Introduction Using FBP or PROMETHEUS requires calibration

Data

Model

Anderson (2009) suggests several reasons:

The assumption that the whole perimeter is active

The need for diurnal adjustment in litter moisture

We argue for an additional possibility: that the FBP System predicts better at the higher end of fire spread potential, because of the burning conditions during the experimental burns the system is based on.

Conclusions

http://activefiremaps.fs.fed.us/gisdata.php

Introduction

Data

Model

Conclusions

Both fire growth days and 'non-growth' days are required

Forest fire records are available from the OMNR, including perimeters – in a few cases, multiple perimeters.

http://www.nofc.forestry.ca/fire/research/climate_change/lfdb/lfdb_map_e.htm

Introduction We combine MODIS active fire points with fire perimeter polygons

Data

Model

This includes spatial and temporal merging of data. We also compared it with DFOSS's data on active burning fires.

11

Introduction

Data

The resulting dataset has growth day/non growth day vs. FWI component

This includes spatial and temporal merging of data. We also compared it with DFOSS's data on active burning fires.

	year	mon	day	NUM	HOTSPOTS orgunit	firenum	Final_si	ze	Longitude	Latitude	temp	
	20	001	8	11	0 NIP	7	2 38	1.7	-88.3132	53.7968		15
vioaei	20	001	7	23	0 SLK	5	0 4	430	-92.3227	52.9571		19.4
	20	001	7	24	0 SLK	5	0 4	430	-92.3227	52.9571		12.3
	20	001	7	28	0 SLK	5	0 4	430	-92.3227	52.9571		20.3
	20	002	9	1	0 COC	1	0	600	-89.7726	55.6419		16.5

Introduction

Extinguishment day is the day after the last growth

Data

Model

Definition:

An extinguishment day is the day after the last growth day. All prior days could have been extinguishment days.

Hypothesis:

Extinguishment days should have more rain than prior days.

Introduction An inch of rain has a 50% probability of being an extinguishment day

19

Introduction The number of simulated spread days does vary

For CHA001-1999, the numbers of spread events and lengths of spread events varied in the simulation. Note, no extinguishment days.

Introduction | Area burned varies with simulated number of spread days, and which days

Data

For CHA001-1999 (actual size: 19745 ha)

Scenario	Spread days	Area (ha)
S1	6	11129
S2	7	28511
S3	6	27544
S4	6	25152
S5	5	10593
S6	6	17473
S7	6	30128
S8	5	19909
S9	8	38526
S10	5	19909

Model

Introduction | Days are classified as growth; non-growth; and extinguishment days Data For DRY 010-2002 × Model Conclusions

Introduction | Days are classified as growth; non-growth; and extinguishment days Data For DRY 010-2002 × Model **Conclusions**

Introduction There are several benefits to this approach

Data

Unlike the other adjustment methods, spread events can be based on weather variables

Since area burned depends on the number of spread events, the concept can improve area burned predictions

Model

Work is ongoing on applying the spread event and extinguishment models to more historical fires

Introduction

Data

Model

NIP075-2002 simulated and actual to July 19 - 3 burning days

• Nip75ignpt-lcc.shp Nip75_s1tojul19perim.shp Nip75j19lcc.shp W

Introduction Data SLK-031-2002: Simulated and Actual perimeter SLK031-2002: Simulated and actual perimeters (with spread events) Model Slk31-ignguess2.shp Slk31promperim-jul14.shp Slk31realperim-lcc.shp Sik31-ignguess2.shp Sik31-100m2_named_perim.shp Sik31realperim-lcc.shp Conclusions

Introduction	Acknowledgements
Data	Support
	NSERC York University Summer Research Program
Model	
	Data
	OMNR
	USFS
Conclusions	
Conclusions	

Introduction	The logistic model gives probability of extinguishment					
Data	glm(formula = extdaymodela ~ rain, family = binomial(logit)					
Model	Deviance Residuals: Min 1Q Median 3Q Max -1.8992 -0.3985 -0.3771 -0.3771 2.3147 Coefficients:					
	EstimateErrorz valuePr(> z)(Intercept)-2.607700.07307-35.686<2e-16 ***rain0.104220.011119.377<2e-16 ***					
Ormaliana	(Dispersion parameter for binomial family taken to be 1)					
Conclusions	Null deviance: 1951.7 on 3257 degrees of freedom Residual deviance: 1868.1 on 3256 degrees of freedom AIC: 1872.1					

Introduction	Rain predicts extinguishment best
Data	AIC for Rain: 1872 Coefficient: 0.1 P-value < 2e-16
Model	
	AIC for Duff Moisture Code (DMC): 1951 Coefficient = 0.008 P-value = 0.04
	DC and other indices are similar to DMC
Conclusions	

